A solution of the continuous Lyapunov equation by means of power series

نویسنده

  • Jan Jezek
چکیده

(2) ^ © = A' X(t) + X\t) A + B, te(0,co) dt for continuous systems. Here A is a given stable matrix, i.e. all its eigenvalues a, satisfy |a,| < i or Re a,< 0, respectively, and B is a given symmetric matrix. This difference/differential equation is to be solved with a given initial condition X(0). Of special interest is a limit for / -» co; it is a solution of the stationary Lyapunov equation (3) A'XA ~ X + B = 0 or (4) A'X + XA + B = 0 . The latter equation is investigated in matrix algebra books [1], [2] as a special case of the non-symmetric equation (5) AVX + XA2 + B = 0. The structure of solution of (5) is exhibited using elementary divisors or Jordan

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of solution stiff differential equations using MHAM and RSK methods

In this paper, a nonlinear stiff differential equation is solved by using the Rosenbrock iterative method, modified homotpy analysis method and power series method. The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relations. Some numerical examples are studied to demonstrate the accuracy of the presented meth...

متن کامل

A unique continuous solution for the Bagley-Torvik equation

In this paper the Bagley-Torvik equation as a prototype fractional differential equation with two derivatives is investigated by means of homotopy perturbation method. The results reveal that the present method is very effective and accurate.

متن کامل

A Fuzzy Power Series Method for Solving Fuzzy Differential Equations With Fractional Order

In this paper a new method for solving fuzzy differential equation with fractional order is considered. The fuzzy solution is construct by power series in the Caputo derivatives sense. To illustrate the reliability of method some examples are provided. In this paper a new method for solving fuzzy differential equation with fractional order is considered. The fuzzy solution is construct by power...

متن کامل

Optimal integrated passive/active design of the suspension system using iteration on the Lyapunov equations

In this paper, an iterative technique is proposed to solve linear integrated active/passive design problems. The optimality of active and passive parts leads to the nonlinear algebraic Riccati equation due to the active parameters and some associated additional Lyapunov equations due to the passive parameters. Rather than the solution of the nonlinear algebraic Riccati equation, it is proposed ...

متن کامل

European option pricing of fractional Black-Scholes model with new Lagrange multipliers

In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to  btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Kybernetika

دوره 22  شماره 

صفحات  -

تاریخ انتشار 1986